
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 16 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Immunoassay and Immunochemistry
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597271

Beyond Simple Pooling for HIV Screening
Leh-Hun Gwaa; Chung-Cheng Hsieha; Yuan-Ching Kob; Shou-Jen Lanac

a The Department of Epidemiology, Harvard School of Public Health, Boston, U.S.A. b Institute of
Public Health, College of Medicine, National Taiwan University, Taipei, Taiwan c School of Public
Health, Kaohsiung Medical College, Kaohsiung, Taiwan

To cite this Article Gwa, Leh-Hun , Hsieh, Chung-Cheng , Ko, Yuan-Ching and Lan, Shou-Jen(1992) 'Beyond Simple
Pooling for HIV Screening', Journal of Immunoassay and Immunochemistry, 13: 4, 545 — 557
To link to this Article: DOI: 10.1080/15321819208019835
URL: http://dx.doi.org/10.1080/15321819208019835

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597271
http://dx.doi.org/10.1080/15321819208019835
http://www.informaworld.com/terms-and-conditions-of-access.pdf


JOURNAL OF IMMUNOASSAY, 13(4), 545-557 (1992) 
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Leh-Hun Gwa', Chung-Cheng Hsieh', 

Yuan-Ching Ko', Shou-Jen 

'The Department of Epidemiology, Harvard School of Public Health, Boston, U.S.A.; 

'Institute of Public Health, College of Medicine, National Taiwan University, Taipei, Tai- 

wan; tlie School of Public Health, Kaohsiung Medical College, Kaohsiung, Taiwan. 

Abstract 

We discuss some theoretical features underlying the successful uses of pooling in testing 

HIV seroprevalence. In particular it is shown that there is a scaling relation for the 

distribution of positive sera among the pools. A multi-stage pooling method consisting of 

repeatedly lialving the positive pools is proposed. Concentrating on the number of tests 

required for screening all positive individuals the method is shown to be highly efficient in 

low prevalence situations. 

Introduction 

The AIDS epidemic has taken a terrible toll in Africa (1,2) and the outcome of this 

disease may have on the world is uncertain. It is therefore important that large scale testing 

of HIV virus be a viable option to public health officials, to facilitate early treatment of 

affected individuals and to prevent further spreading of the disease. Several investigation 

on the feasibility of using pooled sera to reduce the costs of large scale testing have been 

done. and some encouraging results have been found (4-7). Therefore, it is worthwhile to 

study pooling procedures further and to find efficient procedures to be used in practice. 
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546 GWA ET AL. 

The main obstacle to screening in a general population has been the high cost of siich 

testing. This is especially true in less affluent countries (3). The cost efficiency of a pool- 

ing method depends on many variable factors, such as the cost of test material, the wage 

of a technician, the cost for constituting pools, and so on. Many of these considerations 

vary from place to place and even from time to time, as improvements in testing methods, 

procedures and training are implemented. Thus results for studies on the cost of a pooling 

procedure are not likely to be universally valid. One factor which can be studied indepen- 

dently of all the unstable factors is the expected number of tests for a pooling procedure. 

We shall focus exclusively on this factor in the following discussions. Our main purpose 

is to propose a multi-stage pooling procedure - the bisection procedure. We shall make 

an excursion and discuss a well-known formula in probability. The purpose is two fold: 1. 

To illustrate its relationship with an often-used formula for computing prevalence. 2. It is 

indispensable for analyzing the bisection procedure later. 

The Fisher Formula 

In Ref. ( 5 )  seroprevalence rate was estimated by setting the observed proportion of 

negative pools equal to the expected proportion of negative pools with the equation 

where P is the prevalence, S the number of positive pools, N the number of pools and A the 

number of sera in a pool. The computed prevalence is then compared to the rate of positive 

sera in the samples. Strictly speaking, Eq. [l] is an approximation, reflected in its usiially 

being used in conjunction with a variance formula. The right-hand side of [l] assumes 

that the probability of being negative for each sera in a pool is independent; in reality, a 

finite part is being selected from a finite universe. Nevertheless, the approximation may be 

excellent if the part is negligibly small compared to the universe. However, occasions may 

arise when one will need to substitute the Fisher formula (S), which has no restriction on 

the sizes of the parts or the universe: Given a total of T objects containing T+ positives 

and T- = 2' - T+ negatives. if one randomly picks A objects, then the Probability that 
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one picks R positives and k = A - 'n negatives is 

541 

where C: = a!/b!(a -a ) !  is the number of ways to select b objects from a objects. In the 

context of pooled sera, T = N A  would be the total number of sera, T+ (T-) the total 

number of positive (negative) sera and n ( h )  the number of positive (negative) sera in a 

pool of size A.  According to this formula the probability for finding negative pools is then 

A-1 T- - i 
P(0)  = n T-i 

i = O  
[31 

where only the order T-' term has been retained in a large T expansion in the last part 

of the equation. Thus it is understandable why highly accurate results were obtained in 

Ref. (5) using Eq. [l] - Because with T = 8000, A = 10 and P = 2.44%, the leading 

correction in Eq. [3] is less than 0.02%. Thus the prevalence computed from P(0)  would 

be indistinguishable from that computed using the simpler (1 - P)". 

Eq. [2] provides not only the expected number of negative pools, but also the expected 

number of pools containing one, two, etc. positive sera. Again, when the population is inuch 

greater than the pool size, a simpler formula generalizing Eq. [l] may be used instead, 

namely, 

P ( n )  = C t ( 1  - P)A-"P" = F ( P ;  A , n )  . 141 

For example, in the case studied in Ref. (5) , the number of pools containing 0,1,2,3,4, ... 
positive sera were found to be 626, 155, 17, 2, 0. ... (The pools with one positive and 

one indeterminate has been counted as one positive for sirnplicity.) If one computes the 

expected number of pools with TL positive sera, i.e., 800 x F(2.44%; 10,n) and Eq. [4], one 

finds 624.9, 156.3, 17.6, 1.2, 0.05. ... Thus the formula proves to yield an excellent estimate 

on the distribution of the pools. 

Distribution of Initial Pools 

Detailed information on the outcome of an initial pooling is valuable for planning a 

multi-stage pooling procedure. The basic idea behind any pooling procedure for screening 
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548 GWA ET AL,. 

purposes is the expectation that a large number of tests spent on the individual negative 

sera will be avoided by a much smaller number of tests spent on negative pools. Whether 

this is the cme or not depends on the pool size, the prevalence and the procedure. Here we 

have in mind a large scale screening program performed on the general population so that 

prevalence is very small and the universe is large, much larger than any technically feasible 

pool size. Under the circumstances the function F( P; A, n) will be sufficiently accurate for 

computing the probabilities of finding 1-serum pools, 2-sera pools, etc. Therefore we need 

to have a general understanding of the behavior of F ( P ;  A,n).  It turns out that there is a 

nice scaling behavior for this function, so that a single figure suffices to demonstrate the 

function for various pool sizes: this is shown in Fig. 1. The figure is drawn for F(P; A,n)  

vs. (A/16)P and it is clear that the curves for different A’s nearly fall on the same curve. 

The horizontal axis is the actual prevalence for A = 16, but, for example, is 2P  for A = 32 

and hence the range of P covered in the figure is halved, i.e., from 0 to 5%. Within this 

range of scaled prevalence, the probability of finding pools with many positive sera fall off 

rapidly, which means that most of the positive pools contain very few positive sera. In 

such a case, many tests will be wasted on the negative sera if individual testing is done on 

all positive pools. 

T h e  Bisection Procedure 

In the following we describe the bisection procedure, a multi-stage pooling procedure 

for screening purpose. The bisection procedure starts by choosing a pool size of the form 

2”. The initial pooling consists of forming pools of this size. testing each pool and retaining 

the positive pools; this step is common to all pooling procedures, and its analysis is given in 

the previous section. After this initial step, the positive pools are then repooled by dividing 

each pool into two pools for the next stage testing. By “dividing” we mean making two 

half-size pools from the same set of sera in a positive pool. Now there must be at least 

one positive serum in one of the two pools, therefore, if a negative result is found in the 

first of the two pools, the second one must be positive and, hence, no testing is needed 

for the second pool. This step is then repeated until all individual positive sera have been 
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550 GWA ET AL. 

identified. To be precise, we shall refer to the following steps as stage m: (1) Take a pool of 

size 2" and divide into two pools of size 2m-'. (2) Test one pool. If it is positive, retain it 

and test the other pool, which is retained if also positive; if it is negative, retain the other 

pool. Thus the bisection procedure requires a total of m + 1 stages for an initial pool size 

2"; the initial stage is the ordinary pooling step and the particular bisections start from 

stage m and goes down to stage 1. At each stage, one starts with pools of size 2m with at 

least one positive serum and ends with pools of size 2"'-' with at least one positive serum. 

Efflciency Analysis 

We now analyze the efficiency of the bisection procedure. As stated in the intro- 

duction, we shall consider exclusively the number of tests required to identify all positive 

individuals. In practice, there will be other factors to consider as well, but our purpose is 

to study this particular factor thoroughly so that its role is clearly understood. Since we do 

not assume a fixed universe, the proper indicator should be the expected number of tests 

per pool, Nrn, for an initial pool size of 2". Before going into the bisection procedure, let 

us first discuss the procedure in which an initial pooling is followed by individual testing 

for all positive pools. Denoting the corresponding indicator as ,Vm, we have the simple 

equation 

Since one test is required to test the pool. then there is a probability of 1 -F( P: 2"', 0) that 

the pool is positive and requires 2"' more tests. (Of course, the pool size need not be 2"' 

for this procedure. We write the equation in this form for comparison with the bisection 

procedure later.) The expected test per serum is then 1Vrn/2" = 1 - F(P;2"',O) + 2-"' 

Since this equation only involves F(P;A,O) ,  a quick estimate can be obtained just by 

looking at the solid curves in Fig. 1. Let us demonstrate it using the example of Ref. 

(5): There A = 10 and P = 2.44%, hence the scaled prevalence is (10/16)2.44% x 0.015. 

The solid curve gives around 0.78, hence f l / A  x 1 - 0.78 + 0.1 = 0.32. There are 8000 

samples, so one expects to make 8000 x 0.32 = 2560 tests, in good agreement with the 

actual number without retests, 2540. 
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BEYOND SIMPLE POOLING 55 1 

$61 
M d m  

Table 1. The expected number of tests in the bisection procedure for a pool of size 2 m  with 

2 4.5 7.1 9.9 12.7 15.6 18.6 21.6 24.5 27.5 
5.5 9.1 13.0 17.1 21.4 25.7 30.1 34.6 39.0 
6 10.7 15.5 20.7 26.1 31.6 37.2 43.0 48.7 

1,2,3,4 positive sera, respectively. 

7 n - 1 1  2 3 4 5 6 7 8  9 10 
32 64 128 256 512 1024 
7.5 9 10.5 12 13.5 15 2 4  8 1 6  I'h?t% 11.5 3 4.5 6 

Now we analyze the bisection procedure. There is one test for the initial pool, as in 

Eq. [5], but the number of subsequent tests will be different for pools with different number 

of positive sera. Let M,(m) be the expected number of subsequent tests needed to screen 

a pool which contains n positive sera. Then we have 

Ml(m) is simple: such a pool requires :(= $ x 1 + f x 2) tests at each stage, on the 

average, and the number of positive pools is unchanged after each bisection. Since there 

are m stages, we have 

(71 
3 
2 

M1(m) = -m 

The efficiency of the procedure can be seen in this equation, which trades an exponential 

function 2"' with a linear function. Since we are particularly concerned with a small 

prevalence situation, in which most positive pools contain only one positive serum (see Fig. 

I), the bulk of the repooled tests will be spent here. The other M,(m)  can be calculated 

by repeated use of the Fisher formula [2]. The derivation for n = 2,3,4 is given in the 

Appendix and the results are shown in Table 1 for m up to 10. The favorable comparison 

to individual testing (the first row) is quite evident. As expected, pools with more positive 

sera require more tests to screen. but the Table suggests that one still realizes significant 

savings by using a larger pool. 

It is a common practice to retest a positive result. We do not recommand retesting 

in the bisection procedure, because the chance that a positive serum has nat been tested 
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1 2 3  4 5 6 7 8  9 10 

Table 2. Same as Table 1, but with modified stage f .  

6 10.2 14.3 18.6 22.8 27;2 31.6 36.1 40.5 
6 11.8 17.1 22.5 27.9 33.5 39.2 44.9 50.6 25.5 28.5 I Mz(m 2 5.2 8 10.8 13.7 16.6 19.6 22.5 I 

twice by the end of the procedure is small. However, to add more assurance, we can modify 

the final stage to ordinary individual testing, i.e., testing both sera regardless of the result 

of the first serum. If this is the case, Eq. (71 is then changed to Ml(m) = i ( m  - 1) + 2. 

The other M,,(m) are also changed. But as the results in Table 2 show, the added cost is 

not significant. (See the Appendix for detail.) 

In principal, to calculate Nrn requires knowing all the M,(m), which can be computed 

similarly as is done in the Appendix. However, since in the regime of interest F(P; 2m,n), 

n > 4 are typically small (Fig. l ) ,  we use instead two simple bounds for an estimate. The 

function 3m/2 for n = 1 is a lower bound for all M,(m), since the more positive sera in 

a pool the more tests are required. A simple upper bound is 3mn/2, because a pool with 

n positive sera can result in no more than n positive pools a t  any stage. Thus with the 

actual M,(m) for n 5 4 and the bounds for n 2 5, we compute Nrn from Eq. [6] and 

compare it to J V ~ .  Fig. 2 gives the results O f  Jvm/flrn vs. the scaled prevalence, (A/16)P, 

for pool sizes 16, 32, 64, 128, 256, 512 and 1024. Thus the figure shows the advantage of 

the bisection procedure over individual testing of positive pools. Since the “efficiency” in 

Fig. 2 is defined as the ratio of test numbers per serum, the smaller the ratio the more 

efficient the bisection procedure. It should be remembered that the ranges of prevalence 

in the figure are different for different pool sizes. To view it in the actual scale, one should 

imagine squeezing each curve to the left to half of the width of the curve above it. 

Conclusions and Discussions 

Apparently the smaller the prevalence the more efficient a larger pool size is. In 

practice, one has to take into account other cost factors and weigh it against the test- 
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554 GWA ET AL. 

number factor in deciding an appropriate pool size. We have shown the results for the first 

10% scaled prevalence because the figures here are less cluttered. Similar computation 

can of course be extended to a higher range. In particular, the flatness of the bottom few 

curves in Fig. 2 suggest that the large savings may extend to a much higher prevalence 

than is covered in Fig. 2. 

For high prevalence, the bisection procedure may be modified so that a large pool size 

can still be efficient. This may be particularly useful if a technique like PCR (9) becomes 

more accessible. One may consider using PCR for the first few stages when the pool sizes 

are large and switch to less sensitive. but less expensive, testing methods at later stages. 

A simple modification suggests itself from the numbers in Table 1. Notice that M,(m) is 

typically smaller than the pool size, except for high n and low m. This means that there is 

waste at the final few stages on pools with many positive sera. Therefore if the prevalence 

is high, and hence there are many pools with many positive sera, it would be better to 

terminate the bisection at  an earlier stage. For example, if individual testing is performed 

at pool size 4, then the entries in the second column would be uniformly 4. This should 

result in the numbers for M , ( T ~ )  with large n to improve. 

The bisection procedure has a further practical advantage. Once the initial pooling 

size has been chosen, the procedure is completely straightforward; it can easily be made 

into a standard routine for laboratory technicians to follow. This is important, since our 

motivation is not so much to give the mathematically most efficient procedure, but rather 

to provide a sufficiently efficient yet practical procedure to be used in real life, in order 

that a terrible disease may be prevented from taking as much toll on human lives as it has 

and may. 

Appendix 

For pools containing two positive sera, there are two possible outcomes after one 

bisection: either both pools contain one positive serum, with probability p l+l (m) ,  or one 

pool contains both of the sera, with probability p o + z ( m )  = 1 - p l + l ( m ) .  In the latter case, 

if the first test is negative, then there is no need to test the second pool; this occurs with 
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BEYOND SIMPLE POOLING 555 

a probability p o + Z ( m ) / 2 .  Thus the expected number of tests for stage rn is $ p o + z ( m ) +  

2 [ p l + l ( m )  + $ p o + z ( m ) ] .  The resulting pools partly contain one positive serum, which 

then require Ml(m - 1) further tests, and partly contain two positive sera, which requires 

M z ( m  - 1) further tests. Putting these together, we have a recursion formula, 

From Eq. [ 2 ] ,  we have p l + l ( m )  = 2 m - 1 / ( 2 m  -1) Then M z ( m )  can be calculated recursively 

using Mz(1) = 2 and M l ( m )  = 3 m / 2 .  Note that one must use Eq. (21 and not Eq. [ 4 ]  in 

analyzing the bisection procedure, since the parts are half of the universe. 

For pools with three positive sera, there are again two possible outcomes after a 

bisection: either one pool contains one and the other contains two positive sera or one 

pool contains all three positive sera. The probability of the former case is denoted as 

p l + z ( m )  and that of the latter case is p o + s ( m )  = 1 - p l + z ( r n ) .  We have the recursion 

formula 

Then M3(m) is computed using M 3 ( 2 )  = 5; and p l + a ( m )  = ( 3 / 4 ) 2 m / ( 2 m  - l), which 

comes from Eq. [ 2 ] .  

For M*(m) we perform the same analysis, but now the possible outcomes are repre- 

sented by three probabilities, p l + 3 ( m ) ,  p o + * ( m )  and p z + z ( m ) .  The probability of testing 

negative on the first pool is p o + * ( m ) / 2 ;  one test is required for this case and two tests 

otherwise for stage m. The subsequent test numbers are then described by appropriate 

stage m - 1 functions. A recursion equation similar to [ A . l ]  and [ A . 2 ]  can be formulated 

and solved, with the additional condition M 4 ( 2 )  = 6. Table 1 gives the results from these 

computation. 

If the procedure at stage f is modified to testing every serum, without skipping the 

companion of a negative serum, the recursion relations remain valid. The change is in the 
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556 GWA ET AL. 

initial conditions. Thus one simply repeats the calculation using the following instead: 

M l ( m )  = 2 + $(m - l),  M2(1) = 2 and M s ( 2 )  = Md(2) = 4. The results are tabulated in 

Table 2. 
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